profile
Размещено 5 лет назад по предмету Алгебра от Bonya28

y=16-8x+ln(4x)+ln2 [19;215]-(одна девятая и две пятнадцатых)   наибольшее значение

  1. Ответ на вопрос
    Ответ на вопрос дан dnepr1
    y=16-8x+ln(4x)+ln2
    У этой функции очень близкие значения от аргументов 1/9 и 2/15:
                1/9              2/15
     
    х = 0,111111     0,133333
    у = 14,99333    14,99787

    Максимальное значение у= 15 при х = 1/8.
    Область определения функции. ОДЗ:  x > 0
    Точка пересечения графика функции с осью координат Y: График пересекает ось Y, когда x равняется 0: подставляем x=0 в 16-8*x+ln(4*x)+ln(2).
    Результат: y=zoo. Точка: (0, zoo)
    Точки пересечения графика функции с осью координат X: График функции пересекает ось X при y=0, значит нам надо решить уравнение: 16-8*x+ln(4*x)+ln(2) = 0 Решаем это уравнение и его корни будут точками пересечения с X:
    x=-LambertW(-exp(-16))/8. Точка: (-LambertW(-exp(-16))/8, 0)
    Экстремумы функции: Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: y'=-8 + 1/x=0
    Решаем это уравнение и его корни будут экстремумами: x=1/8. Точка: (1/8, 15)
    Интервалы возрастания и убывания функции: Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума: Минимумов у функции нету Максимумы функции в точках: 1/8 Возрастает на промежутках: (-oo, 1/8] Убывает на промежутках: [1/8, oo) Точки перегибов графика функции: Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции,
    + нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции: y''=-1/x^2=0
    Решаем это уравнение и его корни будут точками, где у графика перегибы. 

    Вертикальные асимптоты Нету
    Горизонтальные асимптоты графика функции: Горизонтальную асимптоту найдем с помощью предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим : lim 16-8*x+ln(4*x)+ln(2), x->+oo = -oo, значит горизонтальной асимптоты справа не существуетlim 16-8*x+ln(4*x)+ln(2), x->-oo = oo, значит горизонтальной асимптоты слева не существует Наклонные асимптоты графика функции: Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы : lim 16-8*x+ln(4*x)+ln(2)/x, x->+oo = -8, значит уравнение наклонной асимптоты справа: y=-8*xlim 16-8*x+ln(4*x)+ln(2)/x, x->-oo = -8, значит уравнение наклонной асимптоты слева: y=-8*x Четность и нечетность функции: Проверим функци четна или нечетна с помощью соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем: 16-8*x+ln(4*x)+ln(2) = 8*x + ln(-4*x) + ln(2) + 16 - Нет16-8*x+ln(4*x)+n(2) = -(8*x + ln(-4*x) + ln(2) + 16) - Нет значит, функция не является ни четной ни нечетной.




Не тот ответ на вопрос, который вам нужен?
Найди верный ответ
Самые новые вопросы
tegysigalpa2012
Русский язык - 5 лет назад

Помогите решить тест по русскому языку тест по русскому языку «местоимение. разряды местоимений» для 6 класса 1. укажите личное местоимение: 1) некто 2) вас 3) ни с кем 4) собой 2. укажите относительное местоимение: 1) кто-либо 2) некоторый 3) кто 4) нам 3. укажите вопросительное местоимение: 1) кем-нибудь 2) кем 3) себе 4) никакой 4. укажите определительное местоимение: 1) наш 2) который 3) некий 4) каждый 5. укажите возвратное местоимение: 1) свой 2) чей 3) сам 4) себя 6. найдите указательное местоимение: 1) твой 2) какой 3) тот 4) их 7. найдите притяжательное местоимение: 1) самый 2) моего 3) иной 4) ничей 8. укажите неопределённое местоимение: 1) весь 2) какой-нибудь 3) любой 4) этот 9. укажите вопросительное местоимение: 1) сколько 2) кое-что 3) она 4) нами 10. в каком варианте ответа выделенное слово является притяжательным местоимением? 1) увидел их 2) её нет дома 3) её тетрадь 4) их не спросили

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.